产品展示
/Pro
联系我们
/contact us
您可以直接拨打我们的电话
0371-65351680
您也可以通过以下在线方式联系我们
您当前位置: 首页 > 产品展示
脱落酸98%

发布者:河南诚铭生物科技有限公司 发布时间:2016-07-01 浏览次数:

 

1.jpg

 

 

脱落酸

脱落酸(abscisic acidABA)别名:天然脱落酸。一种?#31181;?#29983;长的?#21442;?#28608;素,因能促使叶子脱落而得名。可能广泛分布于高等?#21442;?/span>。除促使叶子脱落外尚有其他作用,如使芽进入休眠状态、促使马铃薯形成块茎?#21462;?#23545;细胞的延长也有?#31181;?#20316;用。1965年证实,脱落素II和休眠素为同一种物质,统一命名为脱落酸。

简介

指能引起芽休眠、叶子脱落和?#31181;?#32454;胞生长等生理作用的?#21442;?#28608;素

一种?#31181;?#29983;长的?#21442;?#28608;素,因能促使叶子脱落而得名。可能广泛分布于高等?#21442;?/span>。除促使叶子脱落外尚有其他作用,如使芽进入休眠状态、促使马铃薯形成块茎?#21462;?#23545;细胞的延长也有?#31181;?#20316;用。

脱落酸(Abscisic Acid,缩?#27425;?/span>ABA)?#21442;?/span>五大天然生长调节剂之一。单纯的天然活性脱落酸(+)-ABA的生产成本极高,售价高达230.9美元/毫克(Sigma)。由于昂贵的价格和活性?#31995;?#24046;异,脱落酸一直未被广?#27827;?#29992;于农业生产,各国科学?#21494;?#22312;寻找天然型脱落酸廉价生产的方法。

脱落酸可由氧化作用和结合作用被代谢。脱落酸可以刺激乙烯的产生,催促果实成熟,它?#31181;?/span>脱氧核糖核酸和蛋白质的合成。

?#26412;?#22885;运会期间,?#26412;?#20840;市的百万盆鲜花,均有施加脱落酸,以保证花盛开的状态。



脱落酸结构简式

中文名称:脱落酸

中文别名:2-顺式,4-反式-5-(1-羟基-4-氧代-2,6,6-三甲基-2-环?#21512;?/span>-1-)-3-甲基-2,4-戌二烯酸;(±)-脱落酸;S-ABA

英文名称:Abscisic acid

分子式:C15H20O4

分子量:264.3095

脱落酸是一种具有倍半萜结构的?#21442;?#28608;素1963年美国艾迪?#38138;?#31561;从棉铃中提纯了一种物质能显著促进棉苗外植体叶柄脱落,称为脱落素II英国韦尔?#20540;?#20063;从短日照条件下的槭树叶片提纯一种物质,能控制落叶树木的休眠,称为休眠素。1965年证实,脱落素II和休眠素为同一种物质,统一命名为脱落酸。

1961W.C.刘和H.R.卡恩斯从成熟棉铃里分离出一种能使外植体切除叶片后的叶柄脱落加速的物?#24335;?#26230;,称为脱落素,但未鉴定其化学结构。

1963年大熊?#33073;?#21644;F.T.阿迪?#38138;?#31561;?#29992;?#33457;幼铃中分离出另一种加速脱落的物?#24335;?#26230;,叫做脱落素。同年C.F.伊格斯和P.F.韦尔林用色谱分析法从欧亚槭叶子里分离出一种?#31181;?#29289;质,能使生长中的幼苗?#33073;?#20241;眠,他们命名为休眠素。

1965年韦尔?#20540;?#27604;较研究休眠素和脱落素的化学性质后,证明两者是同一物质,分子?#25509;?#22823;熊?#33073;?#31561;1965年提出的一致。统一命名为脱落酸。它在?#21442;?#20013;普遍存在。

脱落酸是一个15碳的倍半萜烯化合物。天然存在的脱落酸是一个对映结构体,特别是右旋化合物(S)-ABA。(R)-ABA的生理活性在多数情况下与(S)-ABA相同。其生理活性取决于以下条件:有自由?#28982;?/span>环?#21644;?#29615;上在 α-β-位置有双键C-2处的双键是顺式。2-反式ABA在光中异构化后才有活性。酯类化合物在酯链水解后产生的自由酸也有活性。

天然脱落酸为白色结晶粉末,易溶?#29366;?/span>乙醇丙酮、氯仿、乙酸乙酯三氯甲烷等,难溶于醚、苯等,水溶解度3-5 g/L(20)。脱落酸的稳定性较好,

天然脱落酸与生长素、乙烯、赤霉素、细胞分裂素并?#24418;参?#20116;大激素,它可以提高?#21442;?#30340;抗旱和?#33073;?#21147;,对开发利用中低产田以及植树造林、绿化沙漠等有极高的价值。ABA还是?#31181;?#31181;子萌发的有效?#31181;?#21058;,因此可以用于种子贮藏,保证种子、果实的贮藏质量。此外,ABA还能引起叶片气孔的迅速关闭,可用于花的保鲜、调节花期、促进生根等,在花卉园艺上有较大的应用价值。对ABA及其应答基因的研究可揭示?#21442;?#25239;逆生理反应的分子过程,从而为定向增强作物对环境的适应力奠定基础。

脱落酸在农业生产上有广阔应?#20204;?#26223;,能产生巨大的经济效益和社会效益。因为存在于?#21442;?#20307;内的天然脱落酸光学构型仅为(+)-cis,trans-ABA,传统的化学合成法生产成本极高,所以目前只有日本、美国等发达国家应用于大规模农业生产。

?#21442;?#30340;"生长平衡因子"

脱落酸又叫S-诱抗素。具有促进?#21442;?#24179;衡吸收水、肥和协调体内代谢的能力。可有效调控?#21442;?#30340;根/冠和营养生长与生殖生长,对提高农作物的品质、产量具有重要作用。

?#21442;?#30340;"抗逆诱导因子"

S-诱抗素是启动?#21442;?#20307;内抗逆基因表达的"第一信使",有效激活?#21442;?#20307;内抗逆免疫系统。具有培源固本,增强?#21442;?#32508;合抗性的能力。对农业生产上抗旱节水、减?#30452;?#20135;和生态环境的?#25351;?#20855;有重要作用。

绿色环保产品

S-诱抗素是所有绿色?#21442;?#22343;含有纯天然产物,该品是通过微生物发酵获得的高纯?#21462;?#39640;生长活性;对人畜无毒害、无刺激性。一?#20013;?#22411;高效、天然绿色?#21442;?#29983;长活性物质。

从脱落酸的名称可知、加速?#21442;?#22120;官脱落是ABA的一个重要生理作用。

关于ABA引起叶、花和果实的脱落问题,存在不同的看法。Addicott1982)作为ABA的发现者之一,根据大量事?#31561;?#20026;内源ABA促进脱落的效应是肯定的。但用ABA作为脱

促进落叶物质的检定法

叶剂的田间试验尚未成功。这可能是由于叶片中的IAAGACTKABA有抵消作用。

Milborrow1984)认为外源的ABA能引起脱落,但比外源乙烯的作用低。

Osborne1989)在评述乙烯和ABA对脱落的作用时得出结论,ABA在脱落方面可能没有直接的作用,而只是引起器官细胞过早衰老,随后刺激乙烯产量的上升而引起脱落,真正的脱落过程的引发剂是乙烯而不是ABA

ABA的生物试法,?#35805;?#37319;用豆叶(或棉叶)脱落法,将被试物质的羊毛脂膏涂在对生叶柄残端,观察其脱落的速?#21462;?#27492;外,还用燕麦或小麦胚芽鞘切段伸长?#31181;?#30340;方法。

ABA是一种较强的生长?#31181;?#21058;,可?#31181;普?#26666;?#21442;?#25110;离体器官的生长。ABA对生长的作用与IAAGACTK相反,它对细胞的分?#24310;?#20280;长起?#31181;?#20316;用。它?#31181;?#32986;芽鞘、嫩枝、根和胚轴等器官的伸长生长,促进休眠。

在秋季短日下,许多木本?#21442;?#21494;子ABA含量增多,促进芽进入休眠。将ABA施到这些木本?#21442;?#29983;长旺盛的小枝上,会引起芽休眠。马铃薯的休眠芽中也含有较多ABA。因此,可用ABA处理马铃薯,以延长其休眠期。

红松、桃、板栗、槭树等休眠种子,含有较多的ABA。经低温层积处理几个月后,种子中ABA含量下降,发芽率显著上升。但ABA含量的高低,不一定是种?#26377;?#30496;的直接原因。红松种子外皮的ABA含量高。经水洗后ABA含量明显下降,但发芽率仍很低。进一步分析云南松、油松、华山松、白皮松种子的ABA含量,发现一些松树种子的ABA含量也较高,但不表?#20013;?#30496;。例如,非休眠的华山松种子ABA含量比休眠的红松种子ABA含量高约10倍。

ABA促进气孔的关闭,调控气孔关闭的信号转导途径有两条:促进气孔关闭和?#31181;?#27668;孔张开。在缺水条件下,?#21442;?#21494;子中ABA的含量增多,引起气孔关闭。这是由于ABA促进钾离子、氯离子和苹果酸离子等外流,就促进气孔关闭。用ABA水溶?#21495;?#26045;?#21442;?#21494;子,可使气孔关闭,降低蒸腾速率。因此,ABA可作为抗蒸腾剂。另外,ABA?#31181;?#38078;离子和?#39318;?#27893;的作用,就?#31181;?#27668;孔张开。

调节种子胚的发育,近年来注意到,在种子胚发育期间,内源ABA作为正的调节因子起着重要的作用。内源ABA可使胚正常发育成熟以及?#31181;?#36807;早萌发。在未成熟胚培养中,外源ABA能引起加速某些特别贮藏蛋白质的形成;如缺乏ABA,这些胚或者不能合成这些蛋白质,或者形成很少。这?#24471;鰨?#31181;子发育早、中期的ABA水平控制着贮藏蛋白质的积累。ABA是否也控制着发育中的胚的淀粉和脂肪的积累,是一个待研究的问题。

此外,ABA还可作为?#21442;?#38450;御盐害、热害、寒害的物质,这可能与它能促使?#21442;?#29983;?#23578;?#30340;胁迫蛋白有关。ABA还可促进一些果树(如苹果)的花芽分化,以及促使一些短日?#21442;?/span>(如黑醋栗)在长日条件下开花。

增加抗逆性,?#35805;憷此擔?#24178;旱、寒冷、高温、盐渍和水涝等逆境都能使?#21442;?#20307;内ABA迅速增加,同时抗逆性增强。如ABA可显著降低高温对叶绿体超微结构的?#33529;擔?#22686;加叶绿体的热稳定性;ABA可诱导某些酶的重新合成而增加?#21442;?#30340;抗冷性、抗涝性和抗盐性。因此,ABA被称为应激激素或胁迫激素(stress hormone)

影响性分化

赤霉素能使大麻的雌株形?#23578;?#33457;,此效应可被脱落酸逆转,但脱落酸不能使雄株形成雌花。

代谢

脱落酸的合成部位主要是根冠和萎蔫的叶片,茎、种子、花和果等器官也有合成脱落酸的能力。例如,在菠菜叶肉细胞的细胞质中能合成脱落酸,然后将其运送到细胞各处。脱落酸是弱酸,而叶绿体的基质呈高pH,所以脱落酸以离子化状态大量积累在叶绿体中。

  葡萄的脱落酸含量

ABA的钝化

ABA可与细胞内的单糖?#34987;?#37240;?#24067;?#38190;结合而失去活性。结合态ABA可水解重新释放出ABA。因而结合态ABAABA的贮藏形式。但干旱所造成的ABA迅速增加并不是来自于结合态ABA的水解,而是重新合成的。

ABA的氧化

ABA氧化产物是红花菜豆酸(phaseic acid)和二氢红花菜豆酸(dihydrophasei acid)。红花菜豆酸的活性极低,而二氢红花菜豆酸无生理活性。

生物合成

脱落酸生物合成的途径主要有两条:1.类萜途径(terpenoid pathway) 脱落酸的合成是由甲瓦龙酸MVA)经过法呢基焦磷酸(farnesylpyrophosphate,FPP),再经过一些未明的过程而形成脱落酸。此途径亦称为C15直接途径。MVA→→FPP→→ABA 2.类胡萝卜素途径(carotenoid pathway) 脱落酸的碳骨架与一些类胡萝卜素的末端部分相似。塔勒(Tarlor)等将类胡萝卜素曝露在光下,会产生生长?#31181;?#29289;。后来发现紫黄质(violaxanthin)在光下产生的?#31181;?#21058;是

2 顺式 黄质醛(xanthoxin),在一些?#21442;?#30340;枝叶中也检出这种物质。黄质醛迅速代谢成为脱落酸。近几年发现,除了紫黄质外,其他类胡萝卜素(如新黄质neoxanthix,叶黄素lutein等)都可光解或在脂氧合酶(lipoxygenase)作用下,转变为黄质醛,最终形成脱落酸(图7-20)。由类胡萝卜素氧化分解生成ABA的途径称为ABA合成的间接途径。通常认为在高等?#21442;?#20013;,主要以间接途径合成ABA。直接途径是指从C15化合物(FPP)直接合成ABA的过程。间接途?#23545;?#26159;指从C40化合物经氧化分解生成ABA 的过程。(Suzuki Masaharu,1998)

作用机理编辑

脱落酸的生理作用主要是导致休眠及促进脱落。用脱落酸处理?#21442;?#29983;长旺盛的小枝,可以引起与休眠相同的状态;产生芽鳞状的叶子代替展开的营养叶;减少顶端分生组织的有丝分裂活动;并能引起下面的叶子脱落和防止休眠的解除。用脱落酸处理能萌发的种子,可以使之休眠。这种对萌发的?#31181;?#20316;用可以用赤霉素或细胞分裂素处理来抵消或逆转。脱落酸能拮抗赤霉素的代替长日照导致长日?#21442;?/span>抽苔开花的作用。它还能使少数短日?#21442;?#22312;非诱导周期的条件下开花。反之,脱落酸的几种作用也可用赤霉素抵消。例如使用赤霉素就能克服脱落酸对遗传性高秆玉米的伸长和对种子萌发及马铃薯发芽的?#31181;?#20316;用。此外,脱落酸的作用也与细胞分裂素相反,脱落酸在?#21442;?#20307;内既有拮抗赤霉素的作用,也有拮抗细胞分裂素的作用。但是这些拮抗作用非常复杂。例如莴苣种子萌发需要光,赤霉素可以代替光。而脱落酸可以抵消赤霉素的促进萌发的作用,但继续提高赤霉素的浓度却不能克服脱落酸的作用、?#25351;?#23545;萌发的促进。

脱落酸在控制核酸蛋白质合成中起作用。脱落酸?#31181;?#22823;麦粒中 α-淀粉酶的合成,并在这一过程中与赤霉素发生拮抗。对酶合成的?#31181;?#20316;用与 RNA合成的?#31181;?#21058;8-氮鸟嘌呤6-甲嘌呤所产生的作用类似,表明脱落酸的作用可能是?#31181;?#23545;决定 α-淀粉酶结构的 RNA的合成,或者阻止 RNA结?#31995;接?#27963;性的酶单位中去。在蒲公英的叶子中脱落酸?#31181;?/span>RNA的合成,而在品藻中则?#31181;?/span>DNA的合成。

脱落酸由于价格昂贵,在农业生产上应用的实验还极少。

脱落酸在农业生产上有广阔的应?#20204;?#26223;,能产生巨大的经济效益和社会效益。归纳起来,主要有以下几个方面:

1)脱落酸是种子萌发的有效?#31181;?#21058;,在很多?#21442;?#30340;休眠种子中它作为一种主要的生长?#31181;?#21058;而存在,很多?#21442;?#30340;种子都可用脱落酸浸泡而防止发芽,而且其的作用是可逆的,它很容?#29366;右?#22788;理过的种子中被淋洗出去,再?#20301;指?#29983;长,因此可用脱落酸?#31181;?#31181;子发芽,用于种子储藏。

2)脱落酸可以促进种子、果实的贮藏物质,特别是贮藏蛋白和糖份的积累。在种子和果实发育早期外施脱落酸,可达到提高粮食作物和果树产量的目的。

3)脱落酸能够增强?#21442;?#25239;寒抗冻的能力,可应用于帮助作物抵抗早春期间的低温冷害以及培育新的抗寒力强的作物品种。如在?#26412;?#36827;行的小田实验,对新冬2号冬小麦用10~6 M进行浸种处理24小时,在第一年1026日播种在试验地,当麦苗刚出土时就进入寒冬,第二年返青时,对照的存活率为51.4%,而脱落酸浸种处理的达到96.3%。脱落酸提高小麦抗寒性的作用有两个特点:一是在不?#31181;?#29983;长的情况下,可提高抗寒性;二是能在温暖的条件下,诱发抗寒性的提高。通常?#21442;?#30340;抗寒性只有在低温下?#22303;?#25165;能得到发展,脱落酸的这些作用特点,不仅对探讨抗寒基因的表达与调控具有重要意义,而且有可能为防止越冬作物的倒春寒冻害带来希望。

4)脱落酸可以提高?#21442;?#30340;抗旱力和?#33073;?#21147;,对于帮助人类抵抗越来越多的干旱环境,开发利用中低产田以及植树造?#20540;?#26377;极高的应用价值。

5)给小麦等施以外源脱落酸能?#31181;?#26438;伸长,并增加穗重,可抗作物倒伏;低浓度脱落酸能促进不定根的形成与再分化,在组织培养中有广阔应?#20204;?#26223;。

脱落酸是?#21442;?#20013;普遍存在的天然物质,人类所食用的水果、蔬菜、粮食中均天然含有,对人类和环境安全。脱落酸原药的生产工艺所采用的原材料均为无毒无害的农副产品,无有害原素或物质加入,其化学结构中也没有毒元素存在。

价值

脱落酸是平衡?#21442;?#20869;源激素和有关生长活性物质代谢的关键因子,具有促进?#21442;?#24179;衡吸收水、肥和协调体内代谢的能力,可有效调控?#21442;?#30340;根/冠和营养生长与生殖生长,对提高农作物的品质、产量具有重要作用。通过施用脱落酸,可减少化学农药的施用量,在提高农产品品质等许多方面有着重要的生理活性作用和应用价值。

除此之外,外源脱落酸能引起叶片气孔的迅速关闭,?#31181;普?#33150;作用,可用于花的保鲜,或在作物幼苗移植栽培的运输过程中防止萎蔫;脱落酸还能控制花芽分化,调节花期,在花卉园艺上有很大的应用价值。

脱落酸属纯天然的?#21442;?#29983;长调节剂,脱落酸原药及其复合实用制剂可广?#27827;?#29992;于水稻、蔬菜、花卉、?#33820;骸?#26825;花、中草药、果树等作物,提高作物在低温、干旱、春寒、盐渍、病虫害等不良生长环境中的生长素质及其结实率和品质,提高中低产田的单产产量,减少化学农药用量。

脱落酸可广?#27827;?#29992;于城市?#33820;?/span>园林等绿化建设,应用于西部地区的节水农业、设施农业,生态植被的?#25351;?#37325;建,对于发展中国农业产业化意义重大。因此,其经济效益、社会效益、环境效益十分显著。

脱落酸实用制剂的应用市场打开后,生产企业所产生的直接经济效益数以亿计;其应用于大棚蔬菜生产,挽回的由于寒害和病虫害所造成的损失,及由于蔬菜品质的提高、农药残留量降低所带来的国内外市场竞争力提高,所形成的间接效益,及为水稻制种业带来的间接经济效益也将数以亿计。

脱落酸又叫S-诱抗素:具有新的生理作用被发现.包括诱导抗干旱、抗冷、冻、抗盐碱、促进生根等作用。

?#21442;?#30340;"生长平衡因子"

S-诱抗素是平衡?#21442;?#20869;源激素和有关生长活性物质代谢的关键因子。具有促进?#21442;?#24179;衡吸收水、肥和协调体内代谢的能力。可有效调控?#21442;?#30340;根/冠和营养生长与生殖生长,对提高农作物的品质、产量具有重要作用。

?#21442;?#30340;"抗逆诱导因子"

S-诱抗素是启动?#21442;?#20307;内抗逆基因表达的"第一信使",可有效激活?#21442;?#20307;内抗逆免疫系统。具有培源固本,增强?#21442;?#32508;合抗性(抗旱、抗?#21462;?#25239;寒、抗病虫、抗盐碱等)的能力。对农业生产上抗旱节水、减?#30452;?#20135;和生态环境的?#25351;?#20855;有重要作用。

绿色环保产品

S-诱抗素是所有绿色?#21442;?#22343;含有的纯天然产物,该品是通过微生物发酵获得的高纯?#21462;?#39640;生长活性;对人畜无毒害、无刺激性。是一?#20013;?#22411;高效、天然绿色?#21442;?#29983;长活性物质。

 

 

河南诚铭生物科技有限公司
 
                                                                                        www.erjol.icu

 

 

上一条: 生根粉98%
下一条:细胞分裂素(6-BA)99%
万国彩票平台注册